Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.22.21262161

ABSTRACT

Different vaccines for SARS-CoV-2 are approved in various countries, but few direct comparisons of the antibody responses they stimulate have been reported. We collected plasma specimens in July 2021 from 196 Mongolian participants fully vaccinated with one of four Covid vaccines: Pfizer/BioNTech, AstraZeneca, Sputnik V and Sinopharm. Functional antibody testing with a panel of nine SARS-CoV-2 viral variant RBD proteins reveal marked differences in the vaccine responses, with low antibody levels and RBD-ACE2 blocking activity stimulated by the Sinopharm and Sputnik V vaccines in comparison to the AstraZeneca or Pfizer/BioNTech vaccines. The Alpha variant caused 97% of infections in Mongolia in June and early July 2021. Individuals who recover from SARS-CoV-2 infection after vaccination achieve high antibody titers in most cases. These data suggest that public health interventions such as vaccine boosting, potentially with more potent vaccine types, may be needed to control the COVID-19 pandemic in Mongolia and worldwide.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.05.21254952

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, new vaccine strategies including lipid nanoparticle delivery of antigen encoding RNA have been deployed globally. The BioNTech/Pfizer mRNA vaccine BNT162b2 encoding SARS-CoV-2 spike protein shows 95% efficacy in preventing disease, but it is unclear how the antibody responses to vaccination differ from those generated by infection. Here we compare the magnitude and breadth of antibodies targeting SARS-CoV-2, SARS-CoV-2 variants of concern, and endemic coronaviruses, in vaccinees and infected patients. We find that vaccination differs from infection in the dominance of IgG over IgM and IgA responses, with IgG reaching levels similar to those of severely ill COVID-19 patients and shows decreased breadth of the antibody response targeting endemic coronaviruses. Viral variants of concern from B.1.1.7 to P.1 to B.1.351 form a remarkably consistent hierarchy of progressively decreasing antibody recognition by both vaccinees and infected patients exposed to Wuhan-Hu-1 antigens.


Subject(s)
Coronavirus Infections , Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL